This Graphical Communication resource pack forms part of a study funded by the ENDEAVOUR scholarships scheme. No part of it can be used for publication and its use is purely restricted to educational purposes.

ENDEAVOUR

SCHOLARSHIPS SCHEME

Marvin Hili M.Ed (Melit.); B.Ed (Hons) (Melit.); Dip.OHS (Melit.).

- University of Malta 2019 -

This Graphical Communication resource pack is divided into three parts.

Part 1 offers:

a) concrete examples of worksheets that can be used for classwork, homework, or tests;
b) 1:1 scaled solutions to these worksheets;
c) step-by-step solutions to the same worksheets, that can be used for peer and self-assessment;
d) teachers' marking schemes that can also be used for peer and selfassessment; and
e) students' self-evaluation sheets.

Note: The marking schemes are in line with the step-by-step solutions. In case of peer or self-assessment, students can follow these steps to help them mark theirs or each other's work.

Regarding the comments section within each marking scheme, teachers can use this for feedback. There is also a similar comments section within the students' self-evaluation sheets. Students on their part can use this to indicate any problems encountered, or how they have responded to previous feedback in their work.

Part 2 offers concrete ideas for tasks, linked with various assessment methods.

Part 3 offers a Taxonomy which is designed for Graphical Communication. This taxonomy can assist teachers plan lessons according to learning goals and choose the best methods with which to assess that which has been learnt.

A rubric to help assess oral presentations is also being offered within part 3. The simple design of this rubric allows it to be used by both teachers and students alike. However, teachers must make sure that students understand well the assessment criteria and the scoring scales before embarking on any peer assessment.

Part 1

Graphical Communication resource pack
Worksheets, Answer sheets, Self-evaluation sheets, Marking schemes, and Step-by-step solutions.

This first part of the resource pack presents fifteen different topics chosen from the five subject foci for Graphical Communication. For each topic, five different resources are being presented. These are the following:
1). a worksheet;
2). a full-scale answer sheet;
3). a self-evaluation sheet;
4). a marking scheme;
5). a step-by-step solution.

These worksheets may be used as classwork, homework, revision exercise, or test. The full-scale answer sheet will help students understand how the design problem needs to look when properly solved.

The self-evaluation sheet is for students to indicate how they feel with regard to the work at hand. Every sheet has been divided into four different learning outcomes, with four different levels of attainment paired with emoticons (cartoon expressions). There is also a space where students can comment, either on the work at hand or else in reply to previous teachers' comments.

The marking scheme is primarily for teachers' use but can be used by students as well. Each one has been divided into several sections according to each design problem. Step-by-step solutions have also been provided for students. These match with every step or section of the teachers' marking scheme. This will help students understand how every design problem needs to be tackled and how marks are distributed across each question. This aspect will aid students in peer and self-assessment but will also serve them as notes for their studies.

Teachers can take these sheets as templates and design their own with other topics they intend to cover.

Warkshects

1st Angle Orthographic Projection - Coffee Table

Use the information from the Isometric drawing in Fig. 1 to complete the Orthographic projection below, by:

- adding the Front elevation and Plan;
- adding the symbol of first angle orthographic projection in the space provided;
- rendering the sketch of the coffee table using colour (Material - Wood).

Note: Material thickness is 10 mm throughout.

FRONT ELEVATION

PLAN
(24 marks)

LEFT END ELEVATION

SKETCH

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Pictograms and Graphs - Supermarket Items

A set of General information signs are needed for a supermarket. Three of these signs have already been drawn; those for the drinks, fish, and meat sections.
a) You are required to provide three more signs; those for the vegetables, bread, and pasta sections. Use the space provided for preparatory sketches.
b) Draw a Bar Graph representing the amount of items sold in a week from the same supermarket. Use the information from the table provided below. Colour the bars in your graph.

Circles in contact - Soap dispenser

Fig. 1 shows the profile of a soap dispenser. This profile is produced using the principles of circles in contact. Use the given measurements to complete the drawing that has been started below.
(18marks)

Fig. 1

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Ellipse - Plane

A surveillance plane used by the military has its main body in the shape of an Ellipse, with Major Axis 160 mm and Minor Axis 68 mm .
a) Draw the Ellipse on the given centre lines;
b) Construct a Tangent at point T ;
c) Construct a Normal at point N ;
d) Reflect the Tangent and Normal horizontally;
e) Complete the tail of the drone according to the information given below.

(18 marks)

N

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Truncated Cone - Pharaoh's hat

Fig. 1 shows the profile of an Egyptian pharaoh (king) wearing a hat. This hat is in the shape of an inverted truncated cone. The drawings below show the completed Front elevation and an incomplete Plan of this hat.
a) Complete the Plan.
b) Draw the full Development of the hat, starting on the given generator $A 0$ and working clockwise.

Isometric Projection - Trophy

Three views of a trophy that is awarded to the best chess player of the year is shown below. On the start lines given, produce an Isometric drawing of this trophy. Take the measurements directly from the orthographic views. Place corner X at the lowest point in your drawing. Also state the type of orthographic projection being used.

(24 marks)

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Polar Enlargement - Paper Puncher

Enlarge the paper puncher logo given below using point \mathbf{P} as the Pole. The scale to which the drawing needs to be enlarged is set by line A-B that is given enlarged to A1-B1

P

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Cabinet Oblique - Kitchen Scales

The Orthographic projection below shows three views of a kitchen scales. Take the measurements directly from these views to draw a cabinet oblique drawing of the same scales, placing corner \mathbf{X} where indicated. Identify the type of orthographic projection being used.

NAME: CLASS:

Sectioning - Support station

Fig. 1 shows a pictorial drawing of a cast iron support station. The right End elevation, Plan, and an outline of the sectional Front elevation are given below.
a. Complete the sectional Front elevation on cutting plane $\mathbf{X}-\mathbf{X}$.
b. Label your drawing accordingly.
c. Render the sketch (cast iron).

Fig. 1

(0) $-\square$

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Two point Perspective - Stage and Podium

Turn the Isometric drawing of the stage and podium shown in Fig. 1 into a 2-point perspective drawing. Use the starting corner FC and the Vanishing points (Vp1) and (Vp2) provided.

FC

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Computer Graphics - Castle

The following computer programme has been written to create the image of a castle for a new mobile application. Use the following information to produce this image on the provided 1000×1000 grid.
(16 marks)
DATA: $A=100 ; B=200 ; C=300 ; D=400 ;$
$E=500 ; F=600 ; G=700 ; H=800 ;$ $\mathrm{I}=900 ; \mathrm{J}=1000$.

ACI 7: Move A,H; Draw A,I; Draw B,I; Draw B,H; Draw C,H; Draw C,I; Draw D,I; Draw D,H; Draw E,H; Draw E,I, Draw F,I; Draw F,H; Draw E,G; Draw E,F; Draw F,F; Draw F,G; Draw G,G; Draw G,F; Draw H,F; Draw H,G; Draw I,G; Draw I,A; Draw B,A; Draw B,G; Draw A,H:

ACI 1: Move C,B; Draw C,E; Draw D,E; Draw D, B; Draw C, B :

ACI 1: Move C,F; Draw C,G; Draw D,G; Draw D,F; Draw C,F:

ACI 5: Move E,A; Draw E,C; Draw F,D; Draw G,D; Draw H,C; Draw H,A:

ACI 3: Move F,A; Draw F,C; Draw G,C; Draw G,A:

The computer responds to the following colour commands:

ACI 7: Black
ACI 1: Red
ACI 5: Blue
ACI 3: Green

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Auxiliary views - Free-standing mirror

A Front elevation and an Auxiliary plan of a free-standing mirror are given. Use the information from the two views to project an orthographic plan on X-Y.
(24 marks)

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Intersection of solids - Reservoir

Fig. 1 shows the pictorial drawing of a reservoir. The central part of this reservoir is composed of two cylinders intersecting each other perpendicularly. In the Orthographic projection below, the complete End elevation, the Plan, and an incomplete Front elevation are given.
a) Complete the Front elevation by constructing the intersection line that results between the two cylinders.
b) Construct a full development of the vertical cylinder on the base line ABCDA.
(18 marks)

Fig. 1

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Assembly drawing - Toy Helicopter

Fig. 1 shows an exploded pictorial view of a toy helicopter.
In the space below, draw a well-proportioned assembled 3D freehand drawing of this toy. Colour and shade your drawing using vibrant colours.
(18 marks)

Fig. 1

DATE:	TITLE: WORKSHEET	NAME:	CLASS:

Lines in Space - Decoration Ball

Fig. 1 shows a Christmas decoration ball suspended from a ceiling by 4 pieces of wire. These pieces have been cut from a single piece of string. The Horizontal Plane (HP) and the Vertical Plane (VP) of the whole setup are given below.
a) Find the true length of each piece of wire in order to determine the original length of the initial piece of string. Do this by getting each piece of wire parallel to the VP.
b) Find the acute true angles that wires $\mathbf{A O}, \mathbf{B O}$, and $\mathbf{C O}$ make with the horizontal plane HP. Identify and print the true length of OD.
(18 marks)

VP
$\mathrm{X} \longrightarrow \mathrm{Y}$
A
C
HP

a) True length of original string: \qquad mm
b) True angle with the horizontal of:

AO: \qquad 0

BO: \qquad ${ }^{\circ}$

B
CO: \qquad -

DATE:	TITLE: WORK SHEET	NAME:	CLASS:

Warkshects answers

1st Angle Orthographic Projection - Coffee Table

Use the information from the Isometric drawing in Fig. 1 to complete the Orthographic projection below, by:

- adding the Front elevation and Plan;
- adding the symbol of first angle orthographic projection in the space provided;
- rendering the sketch of the coffee table using colour (Material - Wood).

Note: Material thickness is 10 mm throughout.
(24 marks)

Pictograms and Graphs - Supermarket Items

A set of General information signs are needed to be used in a supermarket. Three of these signs have already been drawn; those for the drinks, fish, and meat sections.
a) You are required to provide three more signs; those for the vegetables, bread, and pasta sections. Use the space provided for preparatory sketches.
b) Draw a Bar Graph representing the amount of items sold in a week from the same supermarket. Use the information from the table provided below. Colour the bars in your graph.
(18 marks)

Circles in contact - Soap dispenser

Fig. 1 shows the profile of a soap dispenser. This profile is produced using the principles of circles in contact. Use the given measurements to complete the drawing that has been started below.
(18marks)

Fig. 1

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Ellipse - Plane

A surveillance plane used by the military has its main body in the shape of an Ellipse, with Major Axis 160 mm and Minor Axis 68 mm .
a) Draw the Ellipse on the given centre lines;
b) Construct a Tangent at point T;
c) Construct a Normal at point N ;
d) Reflect the Tangent and Normal horizontally;
e) Complete the tail of the drone according to the information given below.

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Truncated Cone - Pharaoh's hat

Fig. 1 shows the profile of an Egyptian pharaoh (king) wearing a hat. This hat is in the shape of an inverted truncated cone. The drawings below show the completed Front elevation and an incomplete Plan of this hat.
a) Complete the Plan.
b) Draw the full Development of the hat, starting on the given generator $A 0$ and working clockwise.

(20 marks)

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Isometric Projection - Trophy

Three views of a trophy that is awarded to the best chess player of the year is shown below. On the start lines given, produce an Isometric drawing of this trophy. Take the measurements directly from the orthographic views. Place corner X at the lowest point in your drawing. Also state the type of orthographic projection being used.

(24 marks)

FIRST ANGLE

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Polar Enlargement - Paper Puncher

Enlarge the paper puncher logo given below using point \mathbf{P} as the Pole. The scale to which the drawing needs to be enlarged is set by line A-B that is given enlarged to A1-B1

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Cabinet Oblique - Kitchen Scales

The Orthographic projection below shows three views of a kitchen scales. Take the measurements directly from these views to draw a cabinet oblique drawing of the same scales, placing corner \mathbf{X} where indicated. Identify the type of orthographic projection being used.
(18 marks)

THIRD ANGLE

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Sectioning - Support station

Fig. 1 shows a pictorial drawing of a cast iron support station. The right End elevation, Plan, and an outline of the sectional Front elevation are given below.
a. Complete the sectional Front elevation on cutting plane \mathbf{X}-X.
b. Label your drawing accordingly.
c. Render the sketch (cast iron).

Fig. 1

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Two point Perspective - Stage and Podium

Turn the Isometric drawing of the stage and podium shown in Fig. 1 into a 2-point perspective drawing. Use the starting corner FC and the Vanishing points (Vp1) and (Vp2) provided.
(18 marks)

FC

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Computer Graphics - Castle

The following computer programme has been written to create the image of a castle for a new mobile phone application. Use the following information to produce this image on the provided 1000×1000 grid.
(16 marks)
DATA: $\mathrm{A}=100 ; \mathrm{B}=200 ; \mathrm{C}=300 ; \mathrm{D}=400$;
$E=500 ; F=600 ; G=700 ; H=800 ;$
$\mathrm{I}=900 ; \mathrm{J}=1000$.
ACI 7: Move A,H; Draw A,I; Draw B,I; Draw B,H; Draw C,H; Draw C,I; Draw D,I; Draw D,H; Draw E,H; Draw E,I, Draw F,I; Draw F,H; Draw E,G; Draw E,F; Draw F,F; Draw F,G; Draw G,G; Draw G,F; Draw H,F; Draw H,G; Draw I,G; Draw I,A; Draw B,A; Draw B,G; Draw A,H:

ACI 1: Move C,B; Draw C,E; Draw D,E; Draw D,B; Draw C,B:

ACI 1: Move C,F; Draw C,G; Draw D,G; Draw D,F; Draw C,F:

ACI 5: Move E,A; Draw E,C; Draw F,D; Draw G,D; Draw H,C; Draw H,A:

ACI 3: Move F,A; Draw F,C; Draw G,C; Draw G,A:

The computer responds to the following colour commands:

ACI 7: Black
ACI 1: Red
ACI 5: Blue
ACI 3: Green

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Auxiliary views - Freestanding mirror

A Front elevation and an Auxiliary plan of a free-standing mirror are given. Use the information from the two views to project an orthographic plan on X-Y.
(24 marks)

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Intersection of solids - Reservoir

Fig. 1 shows the pictorial drawing of a reservoir. The central part of this reservoir is composed of two cylinders intersecting each other perpendicularly. In the Orthographic projection below, the complete End elevation, the Plan, and an incomplete Front elevation are given.
a) Complete the Front elevation by constructing the intersection line that results between the two cylinders.
b) Construct a full development of the vertical cylinder on the base line ABCDA.

Assembly drawing - Toy Helicopter

Fig. 9 shows an exploded pictorial view of a toy helicopter.
In the space below, draw a well-proportioned assembled 3D freehand drawing of this toy. Colour and shade your drawing using vibrant colours.
(18 marks)

Fig. 9

DATE:	TITLE: ANSWER SHEET	NAME:	CLASS:

Lines in Space－Decoration Ball

Fig． 1 shows a Christmas decoration ball suspended from a ceiling by 4 pieces of wire． These pieces have been cut from a single piece of string．The Horizontal Plane（HP） and the Vertical Plane（VP）of the whole setup are given below．
a）Find the true length of each piece of wire in order to determine the original length of the initial piece of string．Do this by getting each piece of wire parallel to the VP．
b）Find the acute true angles that wires $\mathbf{A O}, \mathbf{B O}$ ，and $\mathbf{C O}$ make with the horizontal plane HP．Identify and print the true length of OD．
（18 marks）

VP
note：since $O D$ is parallel to the $V P$ ，as can be seen when looking on the HP，it can be measured directly from the VP

HP
a）True length of original string： \qquad mm
b）True angle with the horizontal of：
\qquad。

BO： \qquad。

B
CO： \qquad。

DATE：	TITLE：ANSWER SHEET	NAME：	CLASS：

Self-evaluation sheets

Student's Rubric				
Coffee Table - Orthographic Projection				
Mark how you feel using a	$3, \begin{gathered} 6 \\ 0 \\ 0 \end{gathered}$			
	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet
I can recognise different faces on a 3D drawing				
I can draw different faces in 2D from a 3D drawing				
I can differentiate between $1^{\text {st }}$ and $3^{\text {rd }}$ angle Orthographic projection and draw the symbol for both				
I can render 3D drawings in different materials using colour				

Comments:

Student's Rubric				
Supermarket Items - Pictograms \& Graphs				
Mark how you feel using a				
	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet
I can generate a number of preparatory sketches to develop ideas				
I can translate an idea to a finalized drawing using instruments and freehand drawing				
I can identify the correct shapes and colour schemes of Pictograms				
I can translate data from tables onto graphs				

Comments:

Student's Rubric				
Soap dispenser - Circle in contact				
Mark how you feel using a	$3\} \begin{aligned} & \text { Q } \\ & \frac{2}{2} \\ & \hline \end{aligned}$			
	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet
I can draw the R10, R15, and R30 circles using compasses				
I can find the centre of arc R50 by construction				
I can find the centre of arc R130 by construction				
I can show tangential points on arcs by drawing short dashes from appropriate centres				

Comments:

Student's Rubric					
Plane - Ellipse					
Mark how you feel using a	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet	

Comments:

Student's Rubric							
Pharaoh's hat - Conic sections							

Comments:

Student's Rubric				
Trophy - Isometric projection				
Mark how you feel using a	$3\} \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c} 2 \\ 0 \end{array}$			$\begin{array}{ll} a & \boxed{0} \\ 0 & \Omega \\ \hdashline & \\ & \end{array}$
	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet
I can use horizontal and vertical measurements from an orthographic projection to draw a crate in Isometric				
I can draw the stepped base in Isometric				
I can draw an Isometric circle and transfer points from it to a given depth				
I can draw chamfers in Isometric as in the diamond shaped block at the top				

Comments:

Student's Rubric					
Paper puncher - polar enlargement					

Comments:

Student's Rubric					
Kitchen scales - Oblique projection					

Comments:

Student's Rubric							
Support station - Sectioning							

Comments:

Student's Rubric					
Stage and Podium - 2-pt Perspective					

Comments:

Student's Rubric							
Castle - Computer Graphics							

Comments:

Student's Rubric				
Standing Mirror - Auxiliary views				
Mark how you feel using a		@		
	I feel confident about it and can teach it to my peers	I understand it, but feel that I need a little more practice to master it	I need a little help to be able to understand it completely	I cannot understand it yet
I can project lines from the auxiliary view to a view of the opposite nature according to the viewing angle, and in turn project these to a view of the same nature as the original				
I can mark the $30^{\circ} / 60^{\circ}$ divisions on an arc in auxiliary view and project points from it to the orthographic view of the opposite nature and subsequently to the orthographic view of the same nature				
I can mark the widths from an auxiliary plan to the orthographic plan via the Front elevation using the $\mathrm{X} 1-\mathrm{Y} 1$ line as datum				
I can line in each part of the plan with straight lines and arcs				

Comments:

Student's Rubric

Reservoir - Intersection of Cylinders
Mark how you
feel using a

Comments:

Student's Rubric						
Toy Helicopter - Assembly drawing						

Comments:

Student's Rubric					
Decoration ball - Lines in space					

Comments:
әшәчวs sd!̣s」eןочวs y

Marking Schemes

Teacher's Marking Scheme Circles in contact - Soap dispenser

Teacher's Marking Scheme

Teacher's Marking Scheme		

Teacher's Marking Scheme	2 pt. Perspective - Stage and Podium		
	Allocated mark	Teacher's mark	Comments
Drawing the crate:			
- Joining Vp1 and Vp2 (Horizon)	1		
- Marking the lengths on either side of the front corner (FC)	1		
- Erecting vertical lines to touch the horizon and finding the Mid-point	1		
- Joining the lines from the front corner to Vp1 and Vp2	1		
- Joining lines to Mid-point from marked lengths and erecting the sides of the crate	2		
- Finishing off the crate	1		
Drawing the stage:			
- Marking the height of the base and closing the base plane	1		
- Marking and outlining the front base chamfers	2		
- Marking and outlining the back base chamfers	1		
- Marking the height and width of the front step and shifting lines back to Vp1 and Vp 2 to form the step in perspective	2		
Drawing the podium:			
- Marking and erecting the sides of the podium	2		
- Finishing off the podium by adding its front part	1		
Overall drawing:			
- Overall Neatness and Presentation	2		
Total	18		

Teacher's Marking Scheme	Intersection of Cylinders - Water Tank		
	Allocated mark	Teacher's mark	Comments
Drawing the Front			
- Dividing circle in Plan into twelve equal parts	1		
- Projecting lines upwards onto the Front elevation	1		
- Projecting lines onto the End elevation via the 45° line	1		
- Generating lines from the End elevation onto the Front	1		
- Marking the points of the cut on the Front elevation and line in with a smooth curve (intersection)	3		
- Neatness and Presentation	1		
Drawing the Development			
- Marking the same twelve divisions on line ABCDA	2		
- Dropping vertical lines from the divisions	1		
- Generating lengths from the Front elevation onto the development	1		
- Lining in the cut with a smooth curve	3		
- Outlining the rest of the development	2		
- Neatness and Presentation	1		
Total	18		

Teacher's Marking Scheme	Lines in space - Decoration ball		
	Allocated mark	Teacher's mark	Comments
Finding the true length of $O A$	3		
Finding the true length of $O B$	3		
Finding the true length of OC	3		
Measuring the true length of OD	1		
Calculating the true length of the original string	1		
Measuring and printing the true angle of AO with the horizontal plane	2		
Measuring and printing the true angle of BO with the horizontal plane	2		
Measuring and printing the true angle of CO with the horizontal plane	2		
Neatness and Presentation	1		
Total	18		

Step-ly-step salutions

Step A

1. Project faint lines onto the Front elevation and Plan;
2. Line in the Orthographic crate;
3. Mark the Horizontal widths on the Front elevation and project faint lines downwards onto the Plan.

PLAN

Step C - PLAN

1. Draw the semi-circular Top on the right;
2. Complete the outline of the Top and bottom shelf;
3. Draw the four Vertical Hidden lines;
4. Draw the hidden detail of the circular hole and centre lines.

Step B - FRONT ELEVATION

1. Outline the Horizontal Top and bottom shelf;
2. Outline the three Vertical sides;
3. Mark the hidden detail of the circular hole.

Step D

1. Draw the symbol of 1st angle projection;
2. Render the sketch

SKETCH

SYMBOL for 1st ANGLE

DATE:	TITLE: COFFEE TABLE - STEP BY STEP SOLUTION	NAME:	CLASS:

Step A - Cut on Plan

1. Divide the circle with $30^{\circ} / 60^{\circ}$;
2. Generate lines to the base of the Front elevation;
3. Connect radial lines to the vertex of the cone.
\qquad 10

Step C - Development

1. Draw an arc at point A using the true length of the cone (furthest line out);
2. Mark twelve divisions on the development (equal to the sections on the circumference);
3. Connect lines from point A (vertex) to the twelve divisions on the Development.

Step B - Cut on Plan

1. Generate radial lines from the cut on the Front elevation to the Plan and mark points of cut on the Plan;
2. Join points to form the cut on the Plan.

Step D - Development

1. Generate horizontal lines from the cut onto the true length (furthest line out);
2. Mark the true lengths from the Front elevation onto the development $(A-0)$;
3. Join the points with a smooth curve to form the cut on the development;
4. Finish off the drawing.

Step \mathbf{A}
5. Draw the Isometric crate;
6. Draw the lowest step;
Step \mathbf{C}
7. Find and mark the centre of the upper Isometric
circle;
8.
9.

Pronstruct the upper Isometric circle;
upper cylinder.

Step A

1. Draw the Oblique crate;
2. Mark the height of the lower part of the scales and draw the circle on the front;
3. Draw the circle on the Front.

Step B

1. Project the circle on the front back 5 mm at 45°;
2. Draw the right-hand and the left hand chamfers.

Step D

1. Finish off the drawing by adding the tray stand.

DATE:	TITLE: KITCHEN SCALES - STEP BY STEP SOLUTION	NAME:	CLASS:

Step A

1. Join Vp1 and Vp2 (Horizon)
2. Mark the lengths on either side of the front corner (FC);
3. Erect vertical lines to touch the horizon and find the Mid-point (MP);
4. Join the lines from the front corner to Vp1 and Vp2;
5. Join lines to Mid-point (MP) from marked lengths and erect the sides of the crate;
6. Finish off the crate

Step B

1. Mark the height of the base and close the base 3. Mark and outline the back base chamfers. plane;
2. Mark and outline the front base chamfers;

Step C

1. Mark the height and width of the front step and shift lines back to V p1 and Vp 2 to form the step in perspective.

MP

Step D

1. Mark and erect the sides of the podium;
2. Finish off the podium by adding its front.

Step A

1. Use $30^{\circ} / 60^{\circ}$ to divide the semi-circle on the Auxiliary plan (you can take extra points if necessary);
2. Generate lines from the $30^{\circ} / 60^{\circ}$ divisions onto the Front elevation;
3. Drop lines onto the plan from the Front elevation.

PLAN

Step C

1. Generate the remaining lines from the auxiliary plan to the Front elevation;
2. Drop the remaining generators from the Front elevation onto the orthographic plan;
3. Mark the widths from the auxiliary plan onto the orthographic plan using the $\mathrm{X} 1-\mathrm{Y} 1$ line as datum;
4. Line in the frame of the mirror.

Step B

1. Mark the widths of the arcs on the orthographic plan from the auxiliary plan using $\mathrm{X} 1-\mathrm{Y} 1$ as the datum;
2. Draw the two arcs of the frame on the orthographic plan
3. Mark and draw the depth of the arced frame.

Step D

1. Mark the width and line in the left stand;
2. Mark the width and line in the right stand;
3. Finish off the drawing including hidden detail.

DATE:	TITLE: $:$ STANDING MIRROR - STEP BY STEP SOLUTION	NAME:	CLASS:

Step A

1. Divide the circle in the Plan into twelve parts; 3. Project lines onto the End elevation via the 45°
2. Project lines upwards onto the Front elevation

front elevation

LEFT END ELEVATIon
\qquad D \qquad $\stackrel{A}{\square}$

development

Step B

1. Generate lines from the End elevation onto the Front elevation;
2. Mark the points of the cut on the Front elevation and line in with a smooth curve (intersection).

\qquad
\qquad
\qquad
\qquad
\qquad
development
front elevation
LEFT END ELEVATION

DATE:	TITLE: RESERVOIR - STEP BY STEP SOLUTION	NAME:	CLASS:

Step A

1. Draw the profile of the helicopter's body (fuselage) and generate its width;
2. Draw the top vertical cylinder (rotor mast).

Step B

1. Draw the top rotor blade;
2. Draw the small horizontal cylinder that attaches to the tail rotor.

Step D

1. Draw the two cylindrical landing skids;
2. Colour the helicopter.

DATE:	TITLE: TOY HELICOPTER - STEP BY STEP SOLUTION	NAME:	CLASS:

Part 2
Graphical Communication resource pack
Ideas on Tasks and Methods of Assessment

The ideas provided below are fashioned around the findings of the present study. These tasks have been grouped under the five subject foci covered in Graphical Communication; Design Graphics, Orthographic projection, Geometry, Pictorial drawing, and Solid Geometry.
These tasks have also been stratified by major topics. Every task can be assessed by one or more methods at the discretion of the teacher. In fact, most of the suggested tasks can be assigned as a take-home project and be presented with a small portfolio when submitted for marking. Some are well suited for group work and can be orally presented as well. Peer evaluation can also ensue. Suggestions on the methods that can be used are given in the far-right column, even though these are not to be taken as being prescriptive.

Ideas on tasks and methods of assessment

Focus	Design Graphics	
Topic	Task Description	Assessment Methods
Graphs \& Charts	- Carry out a questionnaire between students of your own age to understand their preference in sports activities, the amount of money they spend in a year on sport clothing, whether they are affiliated in a sports club, their favourite team, how many times they have assisted to a match, and whether this happened locally or abroad. Design a number of separate and different charts and graphs to graphically represent the gathered information. This can be done through a poster or an infographic featuring information about benefits gained from sports activity. - Design an infographic to promote a healthy lifestyle in the younger generation. Get information such as statistics from the internet. This infographic should be in full colour and the size of an A2 sheet. Computer software can be availed of.	- Project work - Group work (The questionnaire can be discussed as a class and the questions' format agreed to. Different groups can take on different aspects of the questionnaire to represent these graphically - Oral Presentation (The poster or infographic can be orally

		presented in class by each group
Pictograms	- Design a set of pictograms to be placed in a (science lab / workshop / school / public garden). These pictograms should include at least one of each of the following signs (mandatory, prohibition, safe conditions, general information, warning, and fire). - Design a set of pictograms to be planted on a sandy beach. These should include one of each of the following (mandatory, prohibition, general information, warning). These should be presented on a chart divided into four sections. The title for each sign should be given underneath each one.	- Project work - Group work (Groups of four members with each member being responsible for one section of the chart) - Peer assessment (Whole class appraisal of the charts) - Small presentation
Logos	- Design a Logo for a new computer store by the name of 'Keyboard Enterprises'. You should include at least six preparatory sketches demonstrating the progression of thought from initial concept to the final rendition of the logo. Your work should be presented in a portfolio. - Design a Logo for a sports shop selling trainers for athletics. Name this shop after your surname and then trainers (eg., Borg Trainers). Preparatory sketches leading to the final Logo design should be presented in a portfolio.	- Project work - Portfolio - Oral presentation (The logo can be presented in class with the progression from conception to final drawing explained)

All of the above	- Produce a poster for the advertisement of a new fashion watch called 'Timeless'. The final poster should be presented in digital form. Any kind of software can be used. You need to present a progression portfolio to show the stages leading to the final poster.	- Project work - Portfolio - Oral Presentation - (The poster can be presented in class and the progression from conception to final drawing explained)

	assembled drawing of each type of joint. Dimensions are left to your discretion. Render the joints in colour.		
Auxiliary	Use freehand drawing to design a simple solid toy made out of wood for a five-year-old. This toy should at least be made up of four separate pieces that are then joined together. Your exploded views should clearly show how the pieces fit together. Also include two freehand assembled drawings of the toy from two different angles. Preparatory sketches should be included.		
	Develop an exam question dealing with Auxiliary views. The auxiliary view should partly or fully show the true shape of one of the faces of the object you choose to represent. Design the marking scheme to go along this question.	Group work	

Focus	Geometry	
Topic	Task Description	Possible assessment methods
Triangles	- Draw a coloured design for a table placemat consisting solely of triangles (isosceles/scalene/equilateral). Preparatory sketches leading to the final design should be presented in a portfolio. - Design at least three different pairs of earrings consisting of intertwined triangles. These triangles can have circles inscribed or circumscribed to them. Freehand preparatory sketches should be presented with your final drawings in a portfolio.	- Project work - Portfolio - Peer assessment - (Whole class appraisal activity of the best designs) - Small Presentation
Quadrilaterals	- Use a number of quadrilaterals (square/rectangle/rhombus/parallelogram/ kite/trapezium/trapezoid) combined to produce an original design. Colour your design. Freehand preparatory sketches should be presented with your final drawing in a portfolio. - Design a chart / poster to be exhibited in class explaining the properties of quadrilaterals (square/rectangle/rhombus/parallelogram/kite/trapezium/trapezoid). Use colour to simplify the information given.	- Project work - Portfolio - Peer assessment - (Whole class appraisal activity of the best designs) - Oral presentation
Polygons	- Draw a coloured design (factual or abstract) composed of a number of Polygons to be placed in the reception area of a play school. A portfolio containing preparatory sketches leading to the final design should be presented alongside.	- Project work - Portfolio - Peer assessment - (Whole class appraisal activity of the best designs)

	- Draw several regular polygons in colour onto recycled cardboard. Cut these out and attach them to strings to create Christmas tree decorations. (Five-pointed stars (pentagrams) can be created through pentagons as well).	
Ellipses	- Use ellipses as part of drawings for an animal protection campaign (eg., the ellipse can be used to draw swans, turtles, elephants, bird nests etc...). - Design a keychain having the outline of an ellipse. Decorate this keychain with words and coloured patterns of your choice.	- Project work - Portfolio - Group work - (Individual drawings can be combined within one poster) - Oral Presentation - (These posters can be presented in class by the group)
Loci	- Use involutes, helices and spirals to design a set of jewellery items such as necklaces, rings, bracelets, and earrings. Preparatory sketches leading to the final designs should be presented within a portfolio. The final drawings should be geometrically constructed. - Go around the house and find a mechanism of your choice that uses one or a combination of linkages, levers, or cranks. Observe and sketch this mechanism using freehand. Then construct a detailed line drawing of this mechanism using your drawing instruments. Present all your work within a portfolio.	- Project work - Portfolio - Group work - (every student in the group can take one jewellery item or one type of locus)
Circles in Contact	- Use the principles of circles in contact to create at least four different original designs for soft drink bottles. Freehand sketches should be presented alongside the four final drawings in a portfolio. - Use a combination of arcs, points, and lines in contact to create two original designs for a vase. These two drawings should be constructed geometrically to measurements of your choice. Add a freehand 3D drawing of one of the vases and decorate it in colour.	- Project work - Portfolio

Conversion of shapes having equal area	- Design an exam question dealing with the principles of conversion of shapes having equal area, to solve a real-life problem (ex: simplifying the calculation of the area of a quadrilateral field or that of a pentagonal shaped swimming pool). - Create a chart / poster to explain the conversion of a Pentagon into a square having the same area to students of your own age. Colour should be used. Written steps should also be included in the chart using simple block letters.	- Group work - (Discussion and sketching of question in group) - Oral presentation
Vectors	- Together as a class, think of a situation that can be solved using the principles applied when covering the topic of Vectors. With the help of your teacher, turn this situation into a problem that can be solved using graphical construction. After formulating this situation into a graphical problem, create a marking scheme to compliment it.	- Group work - (Whole class activity guided by the teacher)

Focus	Pictorial Drawing	
Topic	Task Description	Assessment Methods
Isometric	- Choose a piece of furniture in your house (table/cabinet/chair/wardrobe/desk) and take measurements of it. From these measurements draw an Isometric scaled down version fitting an A3 paper. Render your drawing in colour matching the same piece of furniture. Include a coloured photo of the piece of furniture together with your drawing. - Design your dream house with surroundings. These surroundings should include at least a swimming pool and a garden. You can search the internet for ideas. Include a print of all the ideas used together with the final drawing.	- Project work - Portfolio - Peer assessment - (A class appraisal exercise of all drawings can be made)
Planometric	- Use the concepts of Planometric drawing to design the interior layout of a kitchen including the appliances (fridge/cooker/hob/sink) therein. The kitchen should also include a window and a dining table. Render your drawing in colour, including furnishings such as carpets, table cloth, and curtains. - Design the interior layout of a sitting area. This should at least include a two-seat sofa, a coffee table, a cabinet with T.V, a window with curtains, and a carpet. Render your drawing in colour. Include any freehand sketches used in the preparation phase.	- Project work - Portfolio

Oblique	- Present a drawing of your name and surname written in cabinet Oblique projection. The entire size of both name and surname should fit an A3 paper. Render your drawing with vibrant colours. - Design a trophy in cabinet oblique. This trophy should be dedicated to the architect of the year. Include all preparatory sketches involved in its design. Dimensions are left to your discretion, but the entire drawing should fit an A3 paper. Render the trophy to make it look like (marble/glass/silver - separate or combined).	- Project work - Portfolio
Perspective	- Use 2pt. Perspective drawing to represent a public recreational area. This should include benches, trees, a food take away outlet, and a water fountain. The drawing should be in full colour. Take a number of photos from various locations for reference sake to help you set this environment. A progress portfolio should be presented featuring the development of the creation of this perspective drawing. Include any photos taken in the portfolio. - Draw a 1pt. Perspective drawing of your dream bedroom. This drawing should be in full colour. Preparatory sketches should be included in a portfolio.	- Project work - Portfolio

Focus	Solid Geometry	
Topic	Task Description	Assessment Methods
Truncation of solids	- Make a design for a monument that should consist of a mixture of truncated Pyramids, Prisms, Cones, and Cylinders. The axis of these shapes can lie at any angle, but if they intersect, the axis of intersection should be perpendicular. At least, four preparatory freehand sketches should be presented to show the development of your idea. A cardboard model of the monument should also be presented and should not be larger than $400 \mathrm{~mm}^{3}$. The use of recycled cardboard is recommended. A copy of the geometric drawings, including developments of the said shapes should be presented in a portfolio together with the model. - Go around the house or garage and observe everyday objects that are made out of intersecting solids. You can also use the internet for your research. The axis of intersection of the solids in these objects can be inclined. Make at least six freehand 3D drawings of such objects. Shade or render these drawings according to their material.	- Project work - Portfolio - Group work - (students can be grouped in pairs)
Lines in space	- Design a stand for a fair composed of at least four combined triangles. Draw the Front elevation and Plan of this stand and find the true lengths of each side, so that a miniature cardboard model of it can be constructed. All the drawings leading to the design of this model should be presented in a portfolio. The model should not be larger than $400 \mathrm{~mm}^{3}$. The use of recycled cardboard is recommended.	- Project work - Portfolio

Six steps, seven rules, and two suggestions on the design and delivery of classroom tests

The six steps hereunder have been adapted from Athanasou and Lamprianou (2002).

Step 1 - Write down the topics which are going to be covered by the test. Decide on the duration of the test and determine how many questions you need to prepare in relation to the time it will take students to answer the set questions. Design the appropriate questions and assign marks to each question according to the level of difficulty, to the number of topics involved in each question, and to the amount of time needed to work out each question.

Step 2 - Set out the questions in the space provided. In the case of Graphical Communication, this should mainly be on A3 paper. Decide on the number of papers needed. Give a title to each question according to the topic/s involved. Write down proper instructions for each question and list any instruments or equipment that can be used. Number each question and place the easier ones first. Ensure that questions are not split between pages. Provide enough space for questions to be worked out and provide start lines where necessary. Write down the amount of marks that will be awarded for each question.

Step 3 - Prepare a marking scheme with a model answer to each question with guidelines on the marks to be awarded for each separate part of each question.

Step 4 - Proof-read the written questions and review the given drawings. A second proofreading and reviewing of the paper can be assigned to a colleague teaching the same subject. This exercise can draw your attention to any errors or omissions committed. It would be ideal if your colleague could work out the questions him/herself against the time allocated. This would guarantee that the time given for answering the paper is suitable and that all marks are rightly distributed.

Step 5 - Administer the test making sure that everyone has understood the instructions given and is aware of what is expected of him/her. Special concessions might be needed
for persons with disability or learning difficulties, such as extra time, assistant readers, or the setting up of special equipment.

Step 6 - Mark the tests following the prepared marking scheme as faithfully as possible. Mark the same question of each paper of every student before moving to the subsequent question. Negative marking should always be avoided. It would be ideal if a colleague could act as marker-moderator.

The seven rules hereunder have been adapted from Taylor and Nolen (2005).
Rule 1 - When writing questions, choose fonts which are easy to read such as Verdana, Calibri, or Arial, and of a size which is not smaller than twelve.

Rule 2 - Avoid cramming each page with too much material, keep the writing to a minimum and avoid the pitfalls of 'construct irrelevant variance'.

Rule 3 - Use Capital letters and Bold type to accentuate certain important words and avoid the use of Italics.

Rule 4 - Minimize any visual distractions by providing unnecessary drawings which might hinder comprehension instead of facilitating it.

Rule 5 - Make sure that any given item in any question does not provide the answer to any other part of any other question.

Rule 6 - Design the test to proceed from the general to the specific in any one question, and from easier to more difficult questions as the test progresses.

Rule 7 - Try to measure students' knowledge and skills in a variety of ways and more than once to make sure that their responses are a true measure of their understanding.

Suggestion 1 - Avoid asking for a compulsory method to be used when several exist. If students are able to solve a given problem, it should not matter which route they take to do so.

Suggestion 2 - Avoid designing questions that are dependent on any other to be solved. Students should not be hindered to solve any problem due to their inability to solve any other problem within the same test.

Part 3

Graphical Communication resource pack

Taxonomy and Oral presentation rubric

> A Taxonomy is being proposed to help Graphical Communication teachers classify learning objectives and align these with instruction and assessment. Benjamin Bloom (1971), the author of the original taxonomy, suggested that every discipline should fashion its own taxonomy in its own technical language. Taking cue from Clark and Ernst (2010), the presented taxonomy has had its knowledge dimension changed to the five subject foci that compose the subject, namely; Design Graphics, Orthographic Projection, Geometry, Pictorial Drawing, and Solid Geometry. On the other hand, the cognitive processes have been changed to Remember, Understand, Utilize, Evaluate, and Develop, to be more congruent with the language and concepts used in Graphical Communication.
> A rubric to help assess oral presentations is also being proposed. This rubric can be used by teachers and students, provided that the latter are made familiar with the criteria, the related levels, and the soring scale before any assessment is attempted. Three of the used assessment criteria in the proposed rubric are those identified by Van Ginkel et al. (2017), namely; knowledge content, presentation's structure, and interaction with audience, while the fourth criterion is that of use of digital media. The rubric uses a four point scoring scale and pictures have been added to facilitate understanding by students and make it more user-friendly.

Taxanamy

C O G M T R M A A U X P N O H I N I C O C A M A T Y L I O N					
	Remember	Understand	Utilize	Evaluate	Develop
Design Graphics	different shapes/colours associated with information and safety signs	the meaning of the different shapes/colours associated with information and safety signs	given information to draw information and safety signs	the best idea to use from several sketches	information and safety signs according to specific needs
	different names of charts and graphs	the readings taken from charts and graphs	information to draw charts and graphs	which type of chart or graph better explains the available information	charts and graphs according to need and collected information
	names of computer commands (move, draw, mirror, copy, and ACI) associated with graphics software	the function of computer commands (move, draw, mirror, copy, and ACI) associated with graphics software	the computer commands given to draw an image	the most efficient way a series of commands can be written to form an image	a series of computer commands through which an image can be generated
	the names and uses of various design software packages	simple standard software commands	a software package to produce a drawing	the best software package to use according to need	a parametric drawing using a CAD software package

	Remember	Understand	Utilize	Evaluate	Develop
Orthographic Projection	the two types of orthographic projection used ($1^{\text {st }} / 3^{\text {rd }}$ Angle) and their respective symbols	the difference between $1^{\text {st }}$ and $3^{\text {rd }}$ angle orthographic drawings and between $1^{\text {st }}$ and $3^{\text {rd }}$ angle orthographic projection symbols	information from pictorial projections to draw $1^{\text {st }}$ and $3^{\text {rd }}$ angle orthographic drawings	which orthographic projection matches the right pictorial drawing	pictorial drawings from orthographic projections
	the conventions associated with sectional drawings	the reason why sectional drawings are used	information from two complete views of an orthographic projection to produce a $3^{\text {rd }}$ sectional view	the best way to section a solid in order to show the most detail on the inside	sectional 3D solids made out of modelling material like clay
	the meaning of the word assembly with regard to Graphical Communication	that most everyday objects are composed of discrete pieces that are then assembled together	discrete 2D or 3D drawings to form a one piece 2D or 3D drawing	the most effective drawings (2D/3D) that show how best an object can be assembled	a series of pictorial dissembled pieces that can be assembled to form an object
	what the word auxiliary means	the principal need for drawing auxiliary views	two given views in orthographic to project an auxiliary view showing a true shape	the best angle to use in order to represent a drawing in auxiliary view	an orthographic elevation when another elevation and an auxiliary view are given
	that you need at least to views of a line in orthographic to determine its true length	the concept of finding true lengths of lines and why they are used	two orthographic views of a line to find its true length	which method can best be used to find the true length of a line	the true shape of a triangle, from two elevations of the same triangle in orthographic projection

	Remember	Understand	Utilize	Evaluate	Develop
Geometry	the names of different types of angles/lines/triangles/ polygons/quadrilaterals/ parts of circles	the difference between types of angles lines/triangles/ polygons/quadrilaterals/ parts of circles	given information to construct drawings consisting of different types of lines/triangles/ polygons/quadrilaterals/ parts of circles	the type of geometry best suited to accomplish desired drawings	original drawings by combining one or more of the following (lines/triangles/ polygons/quadrilaterals/ parts of circles)
	lettering conventions	why rules of lettering exist	lettering to label drawings	the best size of lettering to use according to need	an eye test board using suitable lettering in various sizes
	that regular / irregular shapes can be enlarged or reduced geometrically	the concept of ratios with regard to enlargement and reduction of shapes	a given ratio to enlarge or reduce a shape	the area needed to enlarge or reduce a given shape	a set of reduced and enlarged drawings of a geometric shape with the pole placed in various positions
	the names of various types of loci (glissette / involute / cycloid / spiral / helix)	the concept of loci as being paths traced by moving points	given information to construct loci	whether a given mechanism is feasibly through loci design	an original exam question dealing with at least two types of loci
	the names of different characteristics related to the ellipse (major axis / minor axis / focal points / tangents and normals)	the relation between the major axis, the minor axis, and the focal points	given information to draw an ellipse, including tangents and normals if necessary	the most adequate method to draw an ellipse	an original design involving the ellipse, normal and tangents
	the four different types of situations involving circles in contact	the principle of adding and subtracting radii to find the centres needed for circles in contact	given information to complete a drawing partly made out of circles in contact	the most eye catching freehand sketch of a real life object made out of circles in contact	an original design of a real life object using circles in contact

	Remember	Understand	Utilize	Evaluate	Develop
cont. Geometry	the various types of tangent to circle/s possibilities	the relation between tangents and circles, and tangents and normals	given information and right construction methods to draw tangents to/between circles	whether exact points of tangency are identified by the adopted method	an original design consisting of various types of tangents to/between circles
	the names of the two methods used for calculating the area of irregular shapes (midordinate / grid)	the concept of the methods used for finding the area of irregular shapes	one of the two known methods to find the area of an irregular shape	which of the two known methods can best be used to calculate the area of an irregular shape	an original exam question to find the area of a recreational space (eg. playground / golf course)
	the various steps used to convert a pentagon or a quadrilateral into a square	the mathematical concept of the construction involved to convert a pentagon or a quadrilateral into a square	the appropriate methods to convert a pentagon or a quadrilateral into a square	mathematically the area of converted shapes to test construction accuracy	a coloured chart showing all the discrete steps used for converting a pentagon or a quadrilateral into a square
	the definition of vectors, and of coplanar and concurrent forces	the concept of resultants	given graphic and numerical information to solve a system of coplanar and concurrent forces	the most efficient way to solve a system of coplanar and concurrent forces	an exam question dealing with finding the equilibrant in a suspended structure

	Remember	Understand	Utilize	Evaluate	Develop
Pictorial Drawing	the names of pictorial drawings (Isometric/Oblique/Plano metric/1pt. \& 2pt. Perspective)	the difference between various types of pictorial drawings (Isometric/Oblique/Plano metric/1pt. \& 2pt. Perspective)	given information to construct pictorial drawings (Isometric/Oblique/Plano metric/1pt. \& 2pt. Perspective)	the strength of each type of pictorial drawing according to need	original pictorial drawings of real life objects/areas that conform to conventional properties of construction (Isometric/Oblique/Plano metric/1pt. \& 2 pt . Perspective)
Solid Geometry	the four types of solid shapes used in Graphical Communication at SEC level (Cylinders/Prisms/Cones/ Pyramids)	that different truncations produce different types of true shapes (eg., when using cones - ellipse / hyperbola / parabola)	the information from two given views in orthographic projection to produce a third view, a true shape of cut, and also the development of a truncated solid	which truncated solids can best be used to produce a real life object (eg., a funnel / kettle etc...)	drawings from truncated and non-truncated solids to produce designs for real life objects
	that different solids can intersect to form more elaborated solids	the primary aim of the topic of intersecting solids is to find and draw the precise seam between them	the information from two intersecting solids in orthographic to construct the missing seam between the same solids, including their developments	the most efficient way to place developments to be cut, into restricted paper space	3 dimensional cardboard models of two intersecting solids

Rubric for aral presentations

Student's name:			Class:	Title of Presentation:	
		1	2	3	4
Knowledge of Content		Reads everything from a script or from board slides	Reads from a script or from slides but interjects with an example/explanation during/after each section/slide	Uses script or slides but gives own rendering of what is being shown/said	Confident with content as to not read from script/slides, and only uses these to enhance audience's understanding
Presentation's Structure		No introduction is made and jumps from one point to the other of the presentation without coherence	Presents the main points of the presentation systematically without introduction and conclusion	Introduces the topic/work and builds the presentation coherently without conclusion	Introduces the topic/work and builds the presentation coherently and systematically with a good conclusion
Interaction with audience	Eye Contact	Faces the board most of the time instead of audience	Faces audience but avoids eye contact	Uses eye contact but focuses on same part of the audience all the time	Uses good eye contact with entire audience
	Voice	Voice trembles and speaker seems to be unsure of what is being said	Speaker seems sure of what is being said but can barely be heard	Speaker seems sure of what is being said but uses monotone for the entire presentation	Uses voice efficiently to emphasise important points
Use of digital media		No use of digital media is made during the presentation Digital media is only used for preparation	Uses simple text/picture slides (eg., power point) during presentation	Uses computer slides with animation, pictures and video during presentation	Uses computer slides with animation, pictures and videos together with a design software (eg., google sketchup) during presentation

Name of teacher:	Date:	Score out of 20:

